Congratulations...

You have just purchased the highest quality, best performing A/C system ever designed for your Mustang.

To obtain the high level of performance and dependability our systems are known for, please pay close attention to the following instructions. Our installation steps and procedures are derived from a long history of research and development and the combined experience achieved thru thousands of successful installations (and feedback from customers like you). Please remember that our #1 goal is that you’ll have a successful installation and a system that performs at a very high level for many years to come.

Before starting, read the instructions carefully, from beginning to end, and follow the proper sequence. On the next page you’ll find a safety and general checklist that you should read before starting your installation.

Again, thank you from our entire staff.
Check List, Pre-Installation:

- Before beginning the installation check the shipping box for the correct components. YOUR BOXED UNIT INCLUDES A LIST OF MAJOR COMPONENTS AND A LIST OF BAGGED PARTS. We have a 5 stage check process to make sure you have everything you’ll need.

- If your vehicle has been or is being modified, some procedures will need to be adjusted to fit your particular application.

- A basic cleaning of the engine compartment and interior before beginning will make things go more smoothly.

- Check condition of engine mounts. Excessive engine movement can damage hoses to A/C and/or heater.

- Before starting, check vehicle interior electrical functions (interior lights, radio, horn, etc). Make a note of anything that does not work as it’s supposed to. During the installation you might find the opportunity to repair or upgrade non-working or out of date components. When you’re ready to start the installation, DISCONNECT THE BATTERY FIRST.

- Drain the radiator. Retain the coolant and reuse, or dispose of properly.

- SAFETY FIRST: Wear eye protection while drilling/cutting, deburr sharp edges, and never get in a hurry or force a part.

- Tools: Your installation only requires the basic tools everyone has in their garage, nothing exotic or specific to A/C or Heat equipment.

Procedures, During Installation:

- Fittings: Use one or two drops of mineral oil (supplied with your kit) on ALL rubber o-rings, threads and where o-rings seat in fittings. Do not use thread tape or sealants.

- Measure twice (or more), cut once

- Should you have any technical questions, or feel you have defective components (or missing items), call us immediately, we will be glad to assist you. Our toll-free number is listed on every page, we’re here to help!

YOU CAN NOW BEGIN THE INSTALLATION...
A Basic Overview of Automotive A/C....

1. **Evaporator with Blower Fan** In order to remove the heat from the air in the vehicle, the A/C evaporator allows the refrigerant to absorb the heat from the air passing over it. The blower fan moves cool air out into the car interior.

2. **Compressor** The compressor pumps and circulates the refrigerant through the system.

3. **Condenser** The condenser is a heat exchanger mounted at the front of the vehicle. Heat drawn out of the interior of the car is expelled here.

4. **Receiver/Drier** The drier not only dries refrigerant, it also filters the refrigerant and stores it under certain operating conditions.

5. **High Pressure Switch** A pressure switch is used to shut down the system if high or low pressure is detected, basically it acts as a safety switch.

The air conditioning system in your car is comprised of a compressor, condenser, expansion valve, receiver/drier, and evaporator. Refrigerant (also known as Freon) is compressed in the compressor. In the condenser, gas is cooled to a liquid state and travels to the expansion valve. As the liquid refrigerant goes through the expansion valve it rapidly cools in the evaporator. A fan blows over the evaporator and cools the air that blows out your vents.
CONTROL & OPERATING INSTRUCTIONS

Your new Perfect Fit-Elite system offers complete comfort capabilities in virtually every driving condition. This includes temperature control in all of the modes. This system also provides the ability to blend the air between Face, Heat, and Defrost modes simultaneously. To illustrate the various ways you can adjust the airflow direction and temperature - we’ve provided these handy illustrations and chart to show exactly how you can adjust your Perfect Fit-Elite for maximum comfort...

The FAN switch works like the OEM switch, the far left position is OFF (all power to the system is OFF in this position)

There are 11 levels of adjustment within the range of the DASH/FLOOR lever

The COLD/HOT positions works like any traditional adjustment lever

NOTE: When the TEMP lever is in the "FULL COLD" position (TOP), the compressor is ON, no matter what position the DASH / FLR lever is in (think of it as a compressor-override function)

<table>
<thead>
<tr>
<th>Left Lever Position</th>
<th>Distribution</th>
<th>Compressor State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Face A/C 100%</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>Face A/C 80%</td>
<td>Defrost 20%</td>
</tr>
<tr>
<td>3</td>
<td>Face A/C 60%</td>
<td>Defrost 40%</td>
</tr>
<tr>
<td>4</td>
<td>Face A/C 40%</td>
<td>Defrost 60%</td>
</tr>
<tr>
<td>5</td>
<td>Face A/C 20%</td>
<td>Defrost 80%</td>
</tr>
<tr>
<td>6</td>
<td>Defrost 100%</td>
<td>ON</td>
</tr>
<tr>
<td>7</td>
<td>Floor 20%</td>
<td>Defrost 80%</td>
</tr>
<tr>
<td>8</td>
<td>Floor 40%</td>
<td>Defrost 60%</td>
</tr>
<tr>
<td>9</td>
<td>Floor 60%</td>
<td>Defrost 40%</td>
</tr>
<tr>
<td>10</td>
<td>Floor 80%</td>
<td>Defrost 20%</td>
</tr>
<tr>
<td>11</td>
<td>Floor 100%</td>
<td></td>
</tr>
</tbody>
</table>
Remove Glove box, Glove box door, Ashtray, and Radio, and set them aside for reinstall later (see figure 1).

Note: If vehicle is equipped with a console, remove entire console and set aside.

The removal of the Original Heater Assembly can be accomplished by disconnecting three control cables. One is attached to the Heat/Defrost door (see figure 2). One is attached to the Temperature door, and one is attached to the Vent / Heat door (see figure 3). Disconnect the

When retaining parts it’s a good idea to store parts in a zip lock bag, labeled with info where the parts came from and what size/type of tool is needed to reinstall.
Locate blower motor on the firewall (Passenger Side) in the engine compartment. Remove all 4 nuts around blower. Also disconnect the electrical connector from the blower motor (see figure 5A). Cut wires at grommet in firewall.

DRAIN COOLANT FROM RADIATOR. Store safely to reuse or recycle accordingly. Cut heater hose approximately 1” from firewall (see figure 5B). Also, to prevent forgetting to refill the coolant when the installation is completed, do not put the cap back into place - instead put the cap to the side and cover radiator hole with a clean rag or something similar.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT A

You will use all of these parts and hardware during the next series of installation steps.

Illustrations NOT shown actual size

- Two #8 - 20 x 3/8" Screws
- Two #6 - 20 x 3/8" Screws
- Blower Switch Bracket PN# 0023-8
- Blower Switch Knob PN# 525235
- Blower Switch PN# 4M-235
- Face Plate Sticker 0118-1
- One #6 - 20 x 3/8" Screw
- Two - Cable Clips PN# 25-1015
- Two #8 - 20 x 3/8" Screws
- Cable Integrators
REMOVE THE HEATER CONTROL HEAD FROM THE DASH.

1) On the back side of the control head there are two nuts and retaining clips. Remove and retain. Remove the control head assembly (see figure 8).

2) Using an allen wrench, remove blower switch knob. Remove the control cables and the original blower switch and set aside (will not be reused).

3) Attach the blower switch bracket to the top part of the back of the face plate (see figure 9), utilizing the OEM screw (A) and the #8 - 20 x 3/8" screws we provided (B). So as not to interfere with the operation of the lever, install the lower screw from the inside to the outside (C). Then attach the NEW blower switch (D).

Retain all of the original hardware and components until you are completely finished.
Within Bag Kit A we included our exclusive EZ Cable Integrators, which you will now attach to your OEM control head (as shown in Figure 12). Placing the control head on a flat work area, attach them exactly as shown with the integrator marked "MODE" on the upper brace by attaching cable clip to cable integrators as shown in figure 12. Route the extended wire from the integrator thru the upper hole in the lever as shown, making sure it is flush with the OEM component. Repeat the same process for the other EZ Cable Integrator (B), it will be labeled "TEMP".

Attaching the cable integrators to the control head is accomplished by using the supplied cable clamps to secure the integrators to the levers (see figure 11). The first step is to insert the wire end of the integrators into the appropriate lever ends, then while making sure the integrators are flush to the edge of the control head, secure by tightening down the cable clamps (two views are shown in figure 12).
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT B
You will use all of these parts and hardware during the next series of installation steps.

Evaporator Support Bracket
PN# 0022-4

Defrost/Heat Duct Assembly
PN# 2-2025-2

Face Duct Assembly
PN# 2-2025-1

Fresh Air Inlet Block Off
PN# 10-1025-2

Illustrations NOT shown actual size
Locate the Fresh Air inlet block off from bag kit B. Install over hole in inlet cowl as shown on the passenger side (see figure 17). Attach with three #10 - 16 x 3/4" Tek Screws.

Locate the mounting tab location as shown and attach the 1/4" 20 J-clip supplied (see figure 18).
Take a minute to familiarize yourself with the evaporator unit:

- Capillary Tube
- Blower Motor
- Defrost/Floor Servo Motor
- Thermostat
- Blower Motor Plug
- Heater Tubes
- Defrost/Heat Duct Assembly
- Dash Servo Motor
- Liquid Tube
- Expansion Valve
- Suction Tube
- Condensation Drain Outlet
- Firewall Lower Mounting Bracket
BENCH CALIBRATION & OPERATION

- Items Needed for Bench Calibration

- Locate Evaporator Unit from Main Box
- Locate Face Duct Assembly from Bag Kit
- Locate Defrost/Heat Duct Assembly from Bag Kit
- Locate electronic water valve from Bag Kit
- Locate Blue, Yellow, Orange wiring harness from Bag Kit
- Locate main wiring harness from Bag Kit
- Locate the Controls
- Locate ECU and Calibration Key from Bag Kit
- Acquire a 12V Battery (NOT a battery charger)
Push S-Clips over flange securing with two #10 x 5/8” screws, from back

Attach to front outlet securing with pre-installed S-Clips
1. Connect Blue Harness into Defrost/Heat Servo Motor
2. Connect Yellow Harness into Face/Floor Servo Motor
3. Connect Orange Harness into water valve

Click!
• Wiring Preparation Steps 4 thru 7

4. Plug Yellow Harness into Face/Floor Port on ECU

5. Plug Blue Harness into Defrost/Heat Port on ECU

6. Plug Orange Harness into Water Valve Port on ECU

7. From your controls connect Green Harness into Control Port on ECU
Connect corresponding Fan Switch harness to the Bower Switch on Controls.
Connect Power lead to 12V.

Connect red tagged power harness to POWER port on ECU.
Connect ground.

12V Power (20 amp fuse)

Connect corresponding fan motor harness.
Connect ground.

Click!

Connect both BLUE leads into thermostat
(Either lead into either terminal)

Connect ground.

Click!

(White lead is to be connected to compressor)
13
Insert Calibration Key as shown (LED side up) into 6-pin connection in ECU

14
Start by positioning the knobs as shown:
Fan: Off
Mode: Floor
Temp: Cold

YOU WILL SEE...
LED ON
LED OFF
LED ON

15
Move Fan Knob to High...
16
Move MODE knob to DASH in one motion

AFTER YOU MOVE THE KNOB YOU WILL SEE...

LED OFF

17
Move TEMP knob to HOT in one motion

AFTER YOU MOVE THE KNOB YOU WILL SEE...

LED ON
You will be able to hear the internal door(s) move back and forth and feel air coming out of the outlets.

18

19

Move FAN knob to OFF

20

Remove Calibration Key from ECU and store in a safe place.
1. Move FAN knob to HIGH
 Move MODE knob to DASH

 AIR OUT OF DASH VENTS

2. Move MODE knob to DEF

 AIR OUT OF DEFROST VENTS

3. Move MODE knob to FLOOR

 AIR OUT OF FLOOR VENTS
Return all wiring harnesses, water valve, and ECU to their originally bags/boxes (this keeps them organized for future installation steps).

Your controls are now fully calibrated to your unit. Please refer to the next steps in your installation manual for installing the system in your vehicle.

NOTE: IF DURING ANY OF THESE STEPS YOU DO NOT GET THE CORRECT OUTCOME, PLEASE CALL TECH SUPPORT BEFORE INSTALLING INTO VEHICLE.
NOTE: Two people are needed for this step!

Place evaporator unit on floor panel. Roll unit up behind glove box opening, inserting tubes through large opening in firewall.
ONE PERSON ON THE INTERIOR HOLDING EVAPORATOR UNIT IN PLACE:
In bag kit B locate one 1/4” washer and 1/4-20 x 5/8” bolt. Attach to lower mounting bracket through lower OEM hole as shown.

NOTE: Leave bolt loose at this time.

Be sure to align the evaporator unit level with the bottom of instrument panel (assuming the vehicle is sitting level) as shown above, but with a small degree of tilt toward the back to allow proper drain of condensation.
In bag kit B locate one 1/4” washer 1/4-20 x 5/8” bolt. Attach blower motor bracket to J-Clip previously installed.

NOTE: Leave bolt loose at this time.

Be sure to align the evaporator unit level with the bottom of instrument panel as shown above.

1/4-20 x 5/8” bolt and washer
Locate evaporator mounting bracket from bag kit B (PN #0022-4). Attach to evaporator with four #10 x 5/8” screws. USE HAND POWERED SCREWDRIVER. The Bracket is slotted to allow adjustment for proper tilting of unit toward firewall for condensation drainage. Once proper angle is found use one #10-16 3/4” TEK screw and fasten to interior cowl.

LEVEL UNIT WITH BOTTOM EDGE OF DASH AND TIGHTEN ALL BOLTS.

FIGURE 12
Installing the Drain tube

Mount Evaporator level to firewall.

Locate Drain nipple on Evaporator and drill a 3/4" hole below the nipple on the firewall. This will allow condensation to drain properly.

Attach 1/2" clear drain tube to Evaporator nipple and run through 3/4" hole you just drilled.

All condensation will now drain out into the engine bay.

THIS IS FROM INSIDE THE VEHICLE!
Mount controls into dash using OEM hardware.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT C

You will use all of these parts and hardware during the next series of installation steps.

- Power Harness PN# 0105-36
- Wire Harness System
- Relay
- Five #10 - 16 x 3/4" Tek Screws
Wiring Installation Steps 1 and 2

1. Connect Blue Harness into Defrost/Heat Servo Motor
2. Connect Yellow Harness into Face/Floor Servo Motor
3. Connect Orange Harness into water valve
Wiring Installation Steps 4 thru 7

4. Connect Orange Harness into Water Valve Port on ECU

5. Next route other end of harness out of firewall opening

6. Connect Yellow Harness into Face/Floor Port on ECU

7. From your OEM Controls, Connect Green Harness into Control Port on ECU

Mount your ECU under the dash with included tek
Connect corresponding Fan Switch harness to the Bower Switch on Controls.
Connect Power lead to 12V.

Connect red tagged power harness to POWER port on ECU.
Connect ground.

12V Power (20 amp fuse)

Connect both BLUE leads into thermostat (either lead into either terminal)
Connect ground.

(White lead is to be connected to compressor)
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT D

You will use all of these parts and hardware during the next series of installation steps.

- Electronic Water Control Valve
 PN# 16-1023

- Six Worm Gear Clamps

- Firewall Block Off
 PN# 10-1025-1

- Two 1" Cap Plugs

- Clear Plastic Drain Tube

- Two #10 - 16 x 3/4" Tek Screws

- Refrigerant Tape

Illustrations NOT shown actual size
In **Bag Kit D** you’ll find the firewall block off. Install this over the hose connections coming thru the firewall within the engine compartment. Attach with Two #10 - 16 x 3/4” Tek screws.

Water valve hose connects to this connection

This inlet is connected to the intake manifold

FIGURE 26

INSTALL (2) 1” dia. CAP PLUGS OVER HOLES. SLOT ONE FOR THE CABLE.

FIGURE 28
IMPORTANT NOTICE: PROPER INSTALLATION OF WATER VALVE

Your water valve MUST be installed per these instructions!... (If not, your system will not work properly.)

The *lower* heater tube connection on firewall will be routed to the water connection on intake manifold using 5/8" dia. heater hose with the supplied worm gear clamp.

The *upper* heater tube connection on the firewall will be routed to the water valve connection labeled *heater core*, using a 6" piece of 5/8" heater hose attached with supplied worm gear clamp.

Connect the remaining outlet on water valve labeled *water pump* to the water pump using 5/8" dia. heater hose with the supplied worm gear clamp.

FOLLOW THESE TAGS... CHECK IT TWICE BEFORE PROCEEDING!
THESE ARE THE PARTS YOU WILL FIND IN BAG KITS E, F, and G

You will use all of these parts and hardware during the next series of installation steps.

Bag E
- Defrost Adapter Reducers
 PN# 2-1025-3
- Two Duct Hoses, 2" I.D.
- Four Zip-Ties

Bag F
- Two Louver Ball Assemblies
 PN# 2-1005
- Two Duct Hoses, 2" I.D.
- Four #10 - 16 x 3/4" Tek Screws
- Four Zip-Ties

Bag G
- Two Louver Ball Assemblies
 PN# 2-1005
- Two Duct Hoses, 2" I.D.
- Four #10 - 16 x 3/4" Tek Screws
- Four Zip-Ties

Illustrations NOT shown actual size
The following steps are for left and right Defrost Diffusers: Locate and route the duct hoses from the defrost/heat duct assembly (see figure 29) upward toward the defrost adapter diffusers. Next locate and install defrost adapter diffusers from the top of the dash and secure with v-clips supplied. Attach flex hose to the defrost diffuser adapters using zip-ties. Push adapters onto diffusers from below. The other end of the duct hose is installed over the defrost/heat duct assembly outlets on main unit (see figure 30 and the diagram below).
Passenger Center outlet

Drivers louver outlet

Drivers/ Center louver outlet

Passenger outlet

Passenger Center outlet
Locate the new glove box provided in kit. Install using original hardware (see figure 32-33).

Caution: Carefully check under the Instrument Panel for all cables, electrical harness, or Flex Hose that might interfere with the safe operation of the vehicle. Make sure that you cycle the windshield Wipers to insure proper clearance of mechanism.

Reinstall the Glove box door and Ashtray.
If your vehicle was equipped with a center console (which you removed earlier), you may need to modify it as shown (see figure 34) and reinstall. Test fit your console first.

If you have any questions before you move on the final phase of this installation, call us.

888.791.6384

This completes the interior portion of the PERFECT FIT-ELITE installation process. This is a good time to make a final check that all the controls still move freely and that nothing is loose or hanging down.

The interior of your car should look pretty much the same as before you started (or better). Plus you probably got to know the underside of your dash a lot better and might even have repaired or upgraded components that needed attention.

Good Job... Let’s move on to the major components within the engine compartment....
THESE ARE THE PARTS YOU WILL NEED FOR THE ENGINE COMPARTMENT INSTALLATION

You’ll find all of these parts within the main box

Drier
PN# 12-1008

Drier Bracket
PN# 19-1003

Bag of O-rings and Mineral Oil Tube

Liquid Tube
PN# 0019-93

Condenser Brackets
PN# 0019-53

Condenser Brackets
PN# 0019-52

Pressure Switch Harness

Pressure Switch

splice and Bullet Connector

Splice and Bullet Connector

Condenser
PN# 11-1093

Three Refrigerant Hoses

Eight #10 - 20 x 5/8" Screws

Four Zip-Ties

Eight #10 - 20 x 5/8" Screws

Two #8 - 20 x 5/8" Bolts and Lock Nuts

#6 5/16" Liquid Hose

#10 1/2" Suction Hose

#10 1/2" Discharge Hose

1-3/8" Discharge Hose

PN# 0019-93

PN# 0019-52

PN# 0019-53

PN# 12-1008

PN# 19-1003

PN# 11-1093

PN# 0019-93
ENGINE COMPARTMENT INSTRUCTIONS

STEP ONE: IF YOU HAVE NOT ALREADY, DISCONNECT THE BATTERY.

STEP TWO: During the next steps you’ll be installing the condenser, drier, and routing the high/low pressure lines and the liquid line. Since much of this is installed in the OEM location for the condenser, you’ll need to remove the center grill section, horn(s), and latch support assembly (see figure 35). Be sure to retain all the mounting screws – you’ll reinstall these pieces in the exact reverse order with the OEM screws.

STEP THREE: Time to install the compressor kit. Included in your box is a premium compressor kit with all the parts you’ll need to install the compressor. This kit includes easy to follow instructions specifically written for your engine. Once you’ve installed the complete compressor kit, continue on to the next step. We believe that this is the finest compressor kit available, and you’re bound to notice the excellent fit and quality once this step is completed.
STEP FOUR: DRIER AND CONDENSER PREPARATION: You can perform most of the following steps on a clean flat surface like a workbench. Lay the condenser down so that both hose connections are on the right side (the larger connection will be on top). The drier is conveniently mounted on the right hand side of the condenser. First insert the drier into the drier mounting bracket (it’s basically a sleeve for the drier). Attach using the two #8 - 20 x 5/8" Bolts and Lock Nuts, making sure that the drier bracket is bolted to the condenser from the backside. Tighten connections at either end using supplied o-rings on both ends and a few drops of mineral oil to each o-ring.

STEP FIVE: Screw the high-pressure switch into the port at the lower end of the drier liquid tube. Go ahead and plug the pressure switch harness into the switch at this time (black electrical boot with two long white wires).

STEP SIX: Install the upper condenser bracket (A) using four #10 - 20 x 5/8 screws in the 6th, 7th, 11th and 12th holes on the condenser from the left, be sure the bend on the bracket is facing towards you. Next, attach the lower bracket (B) using four #10-20 x 5/8 screws in the 6th, 7th, 13th and 14th hole from the left hand side. This bracket has a large hole that corresponds to the OEM latch support previously removed from the vehicle.
STEP SEVEN: Your OEM radiator support was designed to support a A/C condenser and conveniently has two small indentations on the drivers side for drilling the holes needed for this part of the installation (see figure 36, after-market core supports may or may not have these indentations). If your vehicle was already equipped with a OEM A/C, one of these holes may already be drilled. Locate these two small indentations and drill a 1 3/8” hole thru each (be sure to check for any obstructions before drilling, and remove any sharp burrs from the drilling before continuing, see figure 36). You’ll notice that the hole closest to the upper condenser fitting is level with the connection fitting (the discharge hose to the compressor will go thru this hole). The other hole is to accommodate the liquid hose and the wiring harness plug for the high-pressure switch.

STEP EIGHT: Place the condenser/drier unit into place, locating it so that the holes in the condenser brackets align with the holes in the core support used to attach the hood latch (it will rest on the lower radiator core brace, see figure 37).

If you want to verify that you have the correct indentations in sight before drilling, place fit the condenser into it’s final location. Also, the holes on the upper bracket are larger than needed to allow for small adjustments. The condenser is held in place when the hood latch is reinstalled at a later time.

TECH TIPS
Install the compressor kit. Included was a premium compressor kit with all the parts you’ll need to install the compressor. This kit includes instructions specifically written for your engine. Once you’ve installed the complete compressor kit, continue on to connecting the hoses.

CONNECTING THE HOSES:
Based on PASSENGER or DRIVERS SIDE compressor mounting see illustrations for routing.

The #10 (LARGEST) refrigerant hose. Attach end with service fitting to the compressor using (1) #10 o-ring and a few drops of mineral oil. Attach other end to #10 fitting at the firewall. Attach using one #10 o-ring and a few drops of mineral oil. Tighten securely.

The #6 (SMALLEST) refrigerant hose. Route behind fender and to the connection on firewall. Attach using two #6 o-ring and a few drops of mineral oil.

The #8 (MEDIUM) refrigerant hose. Route behind fender and to the connection on compressor. Attach using two #6 o-ring and a few drops of mineral oil.

TWO WRENCH METHOD

Reminder... Use two wrenches to tighten o-ring fittings
New A/C System Preparation... A MUST READ!

Please read through these procedures before completing this new A/C system charging operation. A licensed A/C technician should be utilized for these procedures to insure that your new system will perform at its peak, and that your compressor will not be damaged.

1) Your radiator/cooling system is an integral part of your new system. Please insure that you have a 50/50 mix of distilled water and antifreeze. The heater coil MUST be purged (cycle heater control valve) to make sure no water, without antifreeze, is in the heater coil before you charge the A/C system.

2) Evacuate the system for 45 minutes (minimum).

3) **Your new compressor MUST be hand-turned 15-20 revolutions before and after charging with liquid. Failure to do this may cause the reed valves to become damaged** (this damage is NOT covered by your warranty).

4) Your new system requires 134a refrigerant. It will require 1.5 lbs (or 24 oz).

5) Your new compressor comes charged with oil - NO additional oil is needed.

6) Insure that the new belt is tight.

7) **DO NOT CHARGE SYSTEM WITH LIQUID REFRIGERANT!**

RECOMMENDED TEST CONDITIONS: (After system has been fully charged and tested for basic operation)

- Determine the temperature outside of the car
- Connect gauges or service equipment to high/low charging ports
- Place blower fan switch on medium
- Close all doors and windows on vehicle
- Place shop fan directly in front of condenser
- Run engine idle up to approx. 1500 rpm

ACCEPTABLE OPERATING PRESSURE RANGES:

1. HIGH-SIDE PRESSURES (150-275 PSI)
2. LOW-SIDE PRESSURES (10-25 PSI in a steady state)

Readings above are based on an ambient temperature of 90° with an adequate airflow on condenser

![Centerline of the Oil Fill Bolt](image)

CAUTION! When mounting your compressor and/or adjusting the belt use caution. Mount by using the centerline of the oil fill plug as your guide. The compressor can ONLY be mounted inbetween the 9 to 3 positions. DO NOT mount inbetween the 4 to 8 positions.

Do NOT tilt, shake or turn refrigerant can upside-down OR use a charging station to install refrigerant while the engine is running. Doing so will direct liquid refrigerant into the compressor piston chamber, causing damage to reed valves and/or pistons and/or other components, as well as potentially seizing the compressor. Allow a minimum of 30 minutes for liquid to "boil off." You must hand turn the compressor hub (not the pulley) a minimum of 15 complete revolutions prior to starting the engine with the clutch engaged.
TEST CONDITIONS USED TO DETERMINE SYSTEM OPERATION
(THESE TEST CONDITIONS WILL SIMULATE THE AFFECT OF
DRIVING THE VEHICLE AND GIVE THE TECHNICIAN THE THREE
CRITICAL READINGS THAT THEY WILL NEED TO DIAGNOSE ANY
POTENTIAL PROBLEMS).

B. CONNECT GAUGES OR SERVICE EQUIPMENT TO
HIGH/LOW CHARGING PORTS.
C. PLACE BLOWER FAN SWITCH ON MEDIUM.
D. CLOSE ALL DOORS AND WINDOWS ON VEHICLE.
E. PLACE SHOP FAN IN FRONT OF CONDENSER.
F. RUN ENGINE IDLE UP TO 1500 RPM.

ACCEPTABLE OPERATING PRESSURE RANGES (R134A TYPE)
1. HIGH-SIDE PRESSURES (150-275 PSI) *Note- general rule of
 thumb is two times the ambient (daytime) temperature, plus 15-20%.
2. LOW-SIDE PRESSURES (10-25 PSI in a steady state).

CHARGE AS FOLLOWS: R134A = 24 OZ.
NO ADDITIONAL OIL IS NECESSARY IN OUR NEW
COMPRESSORS.

TYPICAL PROBLEMS ENCOUNTERED IN CHARGING SYSTEMS

NOISY COMPRESSOR. A noisy compressor is generally caused by charging a
compressor with liquid or overcharging

A. If the system is overcharged both gauges will read abnormally high readings.
 This is causing a feedback pressure on the compressor causing it to rattle or
 shake from the increased cylinder head pressures. System must be
 evacuated and re-charged to exact weight specifications.

B. Heater control valve installation - Installing the heater control valve in the
 incorrect hose. Usually when this occurs the system will cool at idle then
 start to warm up when raising the RPM’s of the motor. THE HEATER
 CONTROL IS A DIRECTIONAL VALVE; MAKE SURE THE WATER FLOW IS
 WITH THE DIRECTION OF THE ARROW. As the engine heats up that water
 transfers the heat to the coil, thus overpowering the a/c coil. A leaking or
 faulty valve will have a more pronounced affect on the unit’s cooling ability. Installing
 the valve improperly (such as having the flow reversed) will also allow water to flow
 through, thus inhibiting cooling. Check for heat transfer by disconnecting hoses from
 the system completely. By running down the road with the hoses looped backed
 through the motor, you eliminate the possibility of heat transfer to the unit.

C. Evaporator freezing - Freezing can occur both externally and internally on an
evaporator core. External freeze up occurs when the coil cannot effectively displace
the condensation on the outside fins and the water forms ice (the evaporator core
resembles a block of solid ice), it restricts the flow of air that can pass through it,
which gives the illusion of the air not functioning. The common cause of external
freezing is the setting of the thermostat and the presence of high humidity in the
passenger compartment. All door and window seals should be checked in the event
of constant freeze-up. A thermostat is provided with all units to control the cycling of
the compressor.

D. Internal freeze up occurs when there is too much moisture inside the system. The
 symptoms of internal freeze up often surface after extended highway driving. The
 volume of air stays constant, but the temperature of the air gradually rises. When
 this freezing occurs the low side pressure will drop, eventually going into a vacuum.
 At this point, the system should be checked by a professional who will evacuate the
 system and the drier will have to be changed.

E. Inadequate airflow to condenser - The condenser works best in front of the radiator
 with a large supply of fresh air. Abnormally high pressures will result from improper
 airflow. Check the airflow requirements by placing a large capacity fan in front of the
 condenser and running cool water over the surface. If the pressures drop
 significantly, this will indicate the need for better airflow.

F. Incorrect or inadequate condenser capacity - Incorrect condenser capacity will
 cause abnormally high head pressures. A quick test that can be performed is to run
 cool water over the condenser while the system is operating, if the pressures
 decrease significantly, it is likely a airflow or capacity problem.

G. Expansion valve failure - An expansion valve failure is generally caused by dirt or
 debris entering the system during assembly. If an expansion valve fails it will be
 indicated by abnormal gauge readings. A valve that is blocked will be indicated by
 high side that is unusually high, while the low side will be unusually low or may even
 go into a vacuum. A valve that is stuck open will be indicated by both the high and
 low pressures rising to unusually high readings, seeming to move toward equal
 readings on the gauges.

H. Restrictions in system - A restriction in the cooling system will cause abnormal
 readings on the gauges. A high-side restriction (between the compressor and the
 drier inlet) will be indicated by the discharge gauges reading excessively high.
 These simple tests can be performed by a local shop and can help determine the
 extent of the systems problem.
Trouble Shooting Your Classic Auto Air A/C System

PROBLEM: system is not cooling properly
ISSUE: cold at idle, warmer when raising engine RPM’s

Make sure the Water Valve is positioned correctly

The water valve is a directional valve and should be installed with the arrow pointing towards the water pump, it should be connected to the heater hose that runs from the heater core to the water pump. If the water valve is connected to the incorrect hose it allows water to circulate through the system via the heater core over powering the cooling effect of the A/C coil, (normally the air conditioning is functioning properly).

Step 1: Check placement of the water valve, correct if needed. (In some cases changing the location of the water valve may not fix the above problem.) Continue to next step.

Step 2 If changing the location of the water valve does not rectify the issue, then possibly the water valve is permanently damaged and may need to be replaced. To check the integrity of the water valve completely remove the water hoses for the heater core and “loop” together. (This will remove the heater system completely from the possibilities) If the system now cools, replace the water valve.

Verify Adequate Air Flow to Condenser

For an air conditioning system to function properly there has to be adequate airflow across the condenser. The function of the condenser is to dissipate heat, without proper airflow your system will not cool correctly in the cabin of your vehicle.

Step 1: connect gauges to a/C hoses. The pressures should be: with the ambient temp is 90, low side pressures should be between 10-25 psi, high side pressures should be between 150-275 psi

Step 2: IF the low side pressures are normal and the high side pressures are high then there might be an airflow issue, continue to next step.

To test air flow to Condenser do the following three tests:

1. Place a piece of paper on the condenser with the car in idle and see if paper is held in place.
2. With car in idle, attach gages, and place a large capacity fan in front of the condenser. What happens to the pressures?
3. With car still in idle and gages attached, pour water down the front of the condenser. What happens to the pressures?

If the paper is held in place you are at least getting some air flow. If the high side decreases during test 2 & 3 then your condenser is not getting enough air which is causing your system to not cool properly. To correct this issue you will need a more powerful mechanical fan.

Step 3: Confirm correct Refrigerant charge in System

All of our systems should be charged with 24 oz or 1.5 lbs of R134A Refrigerant only. If overcharged you will need to evacuate the system and recharge with the correct amount.*

What measurements mean:
Low Temp and High Pressure seem to be equal...
You have a malfunctioning expansion valve that is stuck open.

High Side is extremely high and Low Side is extremely low (possibly into vacuum)...
There is a blockage in the system. Remove hoses and blow compressed air through in both directions. If pressures don’t change its possible that your expansion valve is stuck closed and would have to be replaced.

*Compressor Concerns:
This is often misdiagnosed as a problem for the system not cooling properly. If you have a noisy compressor it is due to improper charging of refrigerant. An overcharged (more than 24 oz or 1.5 lbs R134A) compressor can cause rattling. If charged with pure liquid there is a high probability you have bent reed valves that are causing tapping sound.