Installation Manual

1966-67 Chevelle/Malibu
Factory Air

DOCUMENT #1-2048FA
©2019 Classic Auto Air / 10.19
Congratulations...

You have just purchased the highest quality, best performing A/C system ever designed for your factory air equipped Chevelle.

To obtain the high level of performance and dependability our systems are known for, please pay close attention to the following instructions. Our installation steps and procedures are derived from a long history of research and development and the combined experience achieved thru thousands of successful installations (and feedback from customers like you). Please remember that our #1 goal is that you’ll have a successful installation and a system that performs at a very high level for many years to come.

Before starting, read the instructions carefully, from beginning to end, and follow the proper sequence. On the next page you’ll find a safety and general checklist that you should read before starting your installation.

Again, thank you from our entire staff.
Check List, Pre-Installation:

- Before beginning the installation check the shipping box for the correct components. YOUR BOXED UNIT INCLUDES A LIST OF MAJOR COMPONENTS AND A LIST OF BAGGED PARTS. We have a 5 stage check process to make sure you have everything you’ll need.

- If your vehicle has been or is being modified, some procedures will need to be adjusted to fit your particular application.

- A basic cleaning of the engine compartment and interior before beginning will make things go more smoothly.

- Check condition of engine mounts. Excessive engine movement can damage hoses to A/C and/or heater.

- Before starting, check vehicle interior electrical functions (interior lights, radio, horn, etc). Make a note of anything that does not work as it’s supposed to. During the installation you might find the opportunity to repair or upgrade non-working or out of date components. When you’re ready to start the installation, DISCONNECT THE BATTERY FIRST.

- Drain the radiator. Retain the coolant and reuse, or dispose of properly.

- SAFETY FIRST: Wear eye protection while drilling/cutting, deburr sharp edges, and never get in a hurry or force a part.

- Tools: Your installation only requires the basic tools everyone has in their garage, nothing exotic or specific to A/C or Heat equipment.

Procedures, During Installation:

- Fittings: Use one or two drops of mineral oil (supplied with your kit) on ALL rubber o-rings, threads and rear of bump for o-ring where female nut rides. Do not use thread tape or sealants.

- Measure twice (or more), cut once

- Should you have any technical questions, or feel you have defective components (or missing items), call us immediately, we will be glad to assist you. Our toll-free number is listed on every page, we’re here to help!

YOU CAN NOW BEGIN THE INSTALLATION...
A Basic Overview of Automotive A/C....

1. **Evaporator with Blower Fan** In order to remove the heat from the air in the vehicle, the A/C evaporator allows the refrigerant to absorb the heat from the air passing over it. The blower fan moves cool air out into the car interior.

2. **Compressor** The compressor pumps and circulates the refrigerant through the system.

3. **Condenser** The condenser is a heat exchanger mounted at the front of the vehicle. Heat drawn out of the interior of the car is expelled here.

4. **Receiver/Drier** The drier not only dries refrigerant, it also filters the refrigerant and stores it under certain operating conditions.

5. **High Pressure Switch** A pressure switch is used to shut down the system if high or low pressure is detected, basically it acts as a safety switch.

The air conditioning system in your car is comprised of a compressor, condenser, expansion valve, receiver/drier, and evaporator. Refrigerant (also known as Freon) is compressed in the compressor. In the condenser, gas is cooled to a liquid state and travels to the expansion valve. As the liquid refrigerant goes through the expansion valve it rapidly cools in the evaporator. A fan blows over the evaporator and cools the air that blows out your vents.
D.E.R. Overview

Operation

Your new Perfect Fit-Elite system offers complete comfort capabilities in virtually every driving condition. This includes temperature control in all of the modes. This system also provides the ability to blend the air between Face, Heat, and Defrost modes simultaneously. To illustrate the various ways you can adjust the airflow direction and temperature - we’ve provided these handy illustrations and chart to show exactly how you can adjust your Perfect Fit-Elite for maximum comfort...

The FAN switch works like the OEM switch, moving the lever away from the OFF indicator powers the system.

There are 11 levels of adjustment within the range of the DASH/FLOOR lever.

The COLD/HOT positions work like any traditional adjustment lever.

TEMP LEVER

FAN SWITCH

MODE LEVER

<table>
<thead>
<tr>
<th>DASH</th>
<th>DEF</th>
<th>FLOOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lever Position</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Distribution</td>
<td>Face A/C 100%</td>
<td>Face A/C 80%</td>
</tr>
<tr>
<td></td>
<td>Defrost 20%</td>
<td>Defrost 40%</td>
</tr>
<tr>
<td>Compressor State</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>
Remove glovebox and door, console (if equipped) radio, and OEM A/C Control head and set them aside for modification and reinstallation in later steps (see figure 1).

The removal of the OEM A/C assembly can be accomplished by first disconnecting all cables that run to the unit. You will also need to unplug OEM power cord. Next, remove all eight screws around the A/C housing. Carefully pull the assembly out of the passenger fender well. You will not be reusing any of the OEM A/C assembly (see figure 2).

Next, remove the heater and air distribution assembly from under the dash (do not remove the center louver factory duct assembly, or remove or modify the defrost duct assembly).

When retaining parts it’s a good idea to store parts in a zip lock bag, labeled with info where the parts came from and what size/type of tool is needed to reinstall. Cleaning the parts before you need to reinstall them is a good idea too.
Remove the passenger side plastic kick panel. Next, install the fresh air block plate over the air inlet hole using eight tek screws. (fig 19) Reinstall the kick panel.

Remove evaporator unit from box and place on a flat work surface.

Locate the defrost/heat duct assembly and attach to the evaporator using two #10 - 10 x 5/8" Phillips screws (see figure 18). NOTE: Be sure that the s-clips are pushed over rear flange on evaporator.
Step 1: Locate the template in back of instruction and line it up with cut (dashed) line as shown above. Make sure to mock the cut with the provided adaptor so its as close to the adaptor's size and that the foam is compacted for a proper seal.

Step 2: Locate defroster adaptor in bag kit E. Attach the defrost adaptor over the opening the OEM defrost duct using the clips on the new defrost adaptor.

ALERT! GM part# 3870273

Step 3: Reinstall defrost duct using the original hardware.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT A

You will use all of these parts and hardware during the next series of installation steps.

- **Blower Switch Knob**
 - PN# 525235

- **Blower Switch**
 - PN# 4M-235

- **Two - Cable Clips**
 - PN# 25-1015

- **Cable Integrators**
 - PN# 16-2030

- **Dash Support Brace**
 - PN# 0048-1

- **Two Pushnuts**

- **Two #6 x 3/8" Phillips Screws**

- **Faceplate Sticker**
 - PN# 0118-14

- **Blower Switch Knob**
 - PN# 525235

- **Two - Cable Clips**
 - PN# 25-1015

NOTE: Illustrations NOT shown actual size
BLOWER SWITCH INSTALLATION:

1) Remove the four control cables, the original blower switch and set aside. These will not be reused, retain the OEM screws, as they will be reused.

2) Using the included template, tape the template in place (it’s aligned with the two OEM holes), and drill two 7/64” holes in the side facing close to where the OEM blower switch was (test the position using the new blower switch first).

Place your new blower switch into place thru the OEM opening and secure with the two #6 x 3/8” screws from bag kit A.

Attach included chrome blower switch knob.
Preparing the EZ Cable Integrators for installation: First place a cable clip over the ends of the EZ Integrators (see figure 10). Test fit these on the final mounting location to make sure you have the cable clips installed in the correct direction so that the integrators can be mounted flush with edge of control head. Prepare both integrators the same way. It is very important that you place the cable clips over the end of the integrators very securely and evenly. Place the cable clip over the end, press it firmly into place using needle-nose pliers.

Next, attach the TEMP EZ Cable Integrator to the body of the control head, as shown to the right and secure with the OEM screw upwards from the bottom. The loop ends of the integrator wire will be secured with a push nut (see figures 11 and 12).
1966 Chevelle ONLY

For 1966 Chevelles, attach the **MODE EZ Cable Integrator** to the control head as shown to the right. The loop end of the integrator wire will be secured with a push nut (see figure 13 and 14).

Move all the levers back and forth several times to insure smooth operation, and check all the pushnuts one last time for tightness.
1967 Chevelle ONLY

For 1967 Chevelles, attach the **MODE EZ Cable Integrator** to the control head as shown to the right. The loop ends of the integrator wire will be secured with a push nut (see figure 15 and 16).

Move all the levers back and forth several times to insure smooth operation, and check all the pushnuts one last time for tightness.
These are the parts you will find in Bag Kit B
You will use all of these parts and hardware during the next series of installation steps.

Evaporator Bracket
PN#0040-11

Four #10 - 10 x 5/8" Phillips Screws

Defrost/Heat Duct Assembly
PN#2-2025-2

One Male Spade Connector

Fresh Air Inlet Block Off
PN#10-2048FA-2

Nine #10 - 16 x 3/4" Tek Screws

Face/Floor Assembly
PN#2-2025-1

One Male Spade Connector

Refrigerant Tape

Two 1/4" 20 x 5/8" Bolts

Flange Nut

Two 1/4" Washers

Illustrations NOT shown actual size

www.classicautoair.com • 866.435.7801
Within the engine compartment area, Install Fresh Air inlet block-off Pn# 10-1048-2 (from Bag Kit B) over the OEM fan opening using the OEM screws (A1 and B7).

If necessary, reinstall inner fender.

Remove evaporator unit from box and place on a work surface.
Familiarize yourself with the Evaporator

Take a minute to familiarize yourself with the evaporator unit:
BENCH CALIBRATION & FUNCTION TESTING

- Locate Evaporator Unit from Main Box
- Locate Face Duct Assembly from Bag Kit B
- Locate Defrost/Heat Duct Assembly from Bag Kit B
- Locate electronic water valve from Bag Kit D
- Locate Blue, Yellow, Orange wiring harness from Bag Kit C
- Locate main wiring harness from Bag Kit C
- Locate ECU and Calibration Key from Bag Kit C
- Acquire a 12V Battery (NOT a battery charger)

- Items Needed for Bench Calibration
Push S-Clips over flange securing with two #10x5/8” screws, from back

Attach to front outlet securing with pre-installed S-Clips
BENCH CALIBRATION & FUNCTION TESTING

- Wiring Preparation Steps 1 thru 3

1. Connect Blue Harness into Defrost/Heat Servo Motor

2. Connect Yellow Harness into Face/Floor Servo Motor

3. Connect Orange Harness into water valve
Connect Yellow Harness into Face/Floor Port on ECU

Connect Blue Harness into Defrost/Heat Port on ECU

Connect Orange Harness into Water Valve Port on ECU

From your D.E.R., Connect Green Harness into Control Port on ECU
8. Connect corresponding Fan Switch harness to the Bower Switch on Controls
 Connect Power lead to 12V.

9. Connect red tagged power harness to POWER port on ECU.
 Connect ground.

11. Connect both BLUE leads into thermostat (either lead into either terminal)

12. Connect ground.

12V Power (20 amp fuse)

Click!

Grd -
Insert Calibration Key as shown (LED up) into 6-pin connection in ECU.

Start by positioning the knobs as shown:
- Fan: Off
- Mode: Floor
- Temp: Cold

Move Fan Knob to Center...

YOU WILL SEE...
- LED ON
- LED OFF
- LED ON
16
Move MODE knob to DASH in one motion

17
Move TEMP knob to HOT in one motion
You will be able to hear the internal door(s) move back and forth and feel air coming out of the outlets

Move FAN knob to OFF

REMOVE CALIBRATION KEY FROM ECU AND STORE IN A SAFE PLACE
BENCH CALIBRATION & FUNCTION TESTING

• Function Test, Steps 1 thru 3

1. Move FAN knob to HIGH
 Move MODE knob to DASH
 Move TEMP knob to COLD
 AIR OUT OF DASH VENTS

2. Move MODE knob to DEF
 AIR OUT OF DEFROST VENTS

3. Move MODE knob to FLOOR
 AIR OUT OF FLOOR VENTS
BENCH CALIBRATION & FUNCTION TESTING

Function Test, Steps 4 and 5

Return all wiring harnesses, water valve, and ECU to their originally bags/boxes (this keeps them organized for future installation steps).

Your controls are now fully calibrated to your unit. Please refer to the next steps in your installation manual for installing the system in your vehicle.

NOTE: IF DURING ANY OF THESE STEPS YOU DO NOT GET THE CORRECT OUTCOME, PLEASE CALL TECH SUPPORT BEFORE INSTALLING INTO VEHICLE.
1(866)435-7801

4
Move TEMP knob to HOT

- You will be able to see through water valve passage

5
Move TEMP knob to COLD

- You will NOT be able to see through water valve passage
Mounting the Evaporator

Installing the complete evaporator unit under the dash will go much easier with the help of a friend.

It will be necessary to loosen the dash on the passenger side in order to slide the evaporator into place. Located below the dash to the left (a) and right (b) of the glove box opening are two bolts that will be removed and reused. It will also be necessary to remove the screw holding the trim panel as shown (c).
NOTE: Two people are needed for this step!

Place evaporator on floor panel. Roll unit up behind the glove box opening, inserting tubes thru the large hole in firewall. It is necessary to carefully pull the bottom of the dash to clear the evaporator.
Mounting the Evaporator - Steps 2 and 3

Insert upper rear firewall mounting stud through the OEM hole as shown. Attach using one ¼” – 20 flange nut provided. **NOTE: leave nut loose at this time!**

Locate in Bag Kit B the two ¼” – 20 bolts and washers. Attach to lower mounting bracket through OEM existing holes. **NOTE: leave bolts loose at this time!**

View from the inside of the engine compartment
Reinstall lower dash bolts in support braces with bolts previously removed.

Reinstall Screw into trim piece.
Mounting the Evaporator - Steps 4 thru 5

Locate in bag kit B the right evaporator support bracket (PN#0040-11). Using a non powered screwdriver attach the brace through the holes provided on the evaporator (see figure 1 for EVAP hole location) using (2) #10 x 5/8” pan head screws provided in bag kit B (see Step 4). Attach brace to the dash panel using one #10 x 16 -3/4” Tek screw provided in bag kit B (see Step 5).

Tighten mounting stud nut and lower mounting bracket on firewall.

Right Evaporator Support Bracket
PN#0040-11

Figure 1
Mount Evaporator level to firewall.

Locate Drain nipple on Evaporator and drill a 3/4” hole below the nipple on the firewall. This will allow condensation to drain properly.

Attach 1/2” clear drain tube to Evaporator nipple and run through 3/4” hole you just drilled.

All condensation will now drain out into the engine bay.
Locate your previously modified A/C controls and install back into dash using original hardware.

Locate the dash support brace from your bag kit and replace the OEM brace located to the left of the govebox opening.

NOTE: The cable integrators may interfere with the OEM dash support brace. We’ve included a replacement dash support brace that you use in place of your factory brace. Our brace bends differently to clear the cable integrators.
These are the parts you will find in Bag Kit C

You will use all of these parts and hardware during the next series of installation steps.

The ECU will be along with the calibration key.

Five #10 - 16 x 3/4" Tek Screws

Illustrations NOT shown actual size

Wire Harness System
Wiring Installation Steps 1-3

1. Connect Blue Harness into Defrost/Heat Servo Motor
2. Connect Yellow Harness into Face/Floor Servo Motor
3. Connect Orange Harness into water valve
Wiring Installation Steps 3 thru 6

4. Connect Yellow Harness into Face/Floor Port on ECU

5. Connect Blue Harness into Defrost/Heat Port on ECU

6. Connect Orange Harness into Water Valve Port on ECU

7. From your OEM Controls, Connect Green Harness into Control Port on ECU

Mount your ECU under the dash with included tek screws.
Connect corresponding Fan Switch harness to the Bower Switch on Controls. Connect Power lead to 12V.

Connect red tagged power harness to POWER port on ECU. Connect ground.

Connect 12V Power (20 amp fuse) to 12V. Connect ground.

Connect corresponding fan motor harness. Connect ground.

Connect both BLUE leads into thermostat (either lead into either terminal).

Connect ground.

(White lead is to be connected to compressor)
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT D
You will use all of these parts and hardware during the next series of installation steps.

Electronic Water Control Valve
PN# 16-1023

Six Worm Gear Clamps

Firewall Block Off
PN#10-1048-1

Upper Firewall Blockoff
PN#10-2048FA-4

Upper Firewall Blockoff
PN#10-2048FA-3

Lower Fender Blockoff
PN#10-2048FA-5

Clear Plastic Drain Tube

x 20
Twenty #10 - 16 x 3/4" Tek Screws

Illustrations NOT shown actual size
Locate upper firewall block off plates and install over openings on upper firewall as shown. (FIG 22) Attach using supplied tek screws.

Locate the lower fender block off plate and five tek screws and attach in fender well covering where the OEM evaporator core was removed on pg 7. Install the block off over the A/C hole using the screws.
In **Bag Kit D** you’ll find the firewall block off. Install this over the hose connections coming thru the firewall within the engine compartment. Attach with seven #10 - 16 x 3/4" Tek screws.

TIP: Route ORANGE cable thru the block off plate (it will be plugged into the electronic water valve).

The loose white wire from main power harness can be fed thru the same hole (as shown below).
Your water valve **MUST** be installed per these instructions!... *if not, your system will not work properly.*

The **lower** heater tube connection on firewall will be routed to the water connection on intake manifold using 5/8” dia. heater hose with the supplied worm gear clamp.

The **upper** heater tube connection on the firewall will be routed to the water valve connection labeled **heater core**, using a 6” piece of 5/8” heater hose attached with supplied worm gear clamp.

Connect the remaining outlet on water valve labeled **water pump** to the water pump using 5/8” dia. heater hose with the supplied worm gear clamp.
THESE ARE THE PARTS YOU WILL FIND IN BAG KITS E, F, and G

You will use all of these parts and hardware during the next series of installation steps.

Bag E
- Defrost Adaptor
 PN#2-2048-1
- Two Duct Hoses, 2" I.D.
- Four Zip-Ties

Bag F
- Ball Louver Adaptors
 (2 piece assembly)
 PN#2-1055-1
- Two Duct Hoses, 2" I.D.
- Four Zip-Ties

Bag G
- Cap Plug
 PN#DM-2001
- Louver Adaptor
 PN#2-2048FA-1
- Lower Louver
 (optional)
 2-1038
- Two #10 - 16 x 3/4"
 Tek Screws
- Two Duct Hoses, 2" I.D.
- Four Zip-Ties
One end of the duct hose is installed over the defrost/heat duct assembly outlets on the main unit.

Next route the duct hoses from the defrost/heat duct assembly upward toward defrost vents. Attach the flex hose to the defrost diffuser using zip-ties on both ends.
Bag Kit F: The face/floor assembly comes preinstalled with s-clips which allow you to install it onto the evaporator unit quickly and securely (see figure 25).

Route supplied flex hoses as shown below. Take your time and route them so they don’t become kinked or torn. Hoses are secured to the back of the louvers with the included tywraps.

We’ve also included an OPTIONAL, rectangular lower dash louver that can be used to provide extra cooling for the passenger side of your vehicle. If you want to utilize this vent, just mount onto the lower dash using the included tek-screws and route the included flex hose to it. If you decide not to use this louver, **BE SURE TO CAP THE OPEN PORT** of the face/floor assembly with the included cap plug.

Use the included side louver adaptors to attach flex hoses to your OEM side vents. Secure flexhoses at the evaporator with the included ty-wraps.
Your OEM center vent has a plenum that you will connect to with the included flex hose. Simply attach the flex hose to the evap unit, route the hose upward and insert into the center duct assembly.

Secure flex hoses at the evaporator with the included ty-wraps.

The smoother the route of the flex hoses the better the airflow.
We’ve included a replacement glovebox that you can install at this point. We’ve included screws (Bag Kit G), and you’ll attach the new glovebox to the OEM glovebox door.

This completes the interior portion of the PERFECT FIT-ELITE installation process. This is a good time to make a final check that all the controls still move freely and that nothing is loose or hanging down.
THESE ARE THE PARTS YOU WILL NEED FOR THE ENGINE
COMPARTMENT INSTALLATION ON A 1966-1967 CHEVELLE

- Three Refrigerant Hoses
- Pressure Switch and harness, Bag of O-rings and Mineral Oil Tube
- Splice and Bullet Connector
- Two 1" grommets PN#14-1098
- Condenser Braket PN#0040-31
- Condenser Braket PN#0040-30
- Drier Bracket
- Liquid Tube PN#0040-35
- #8 13/32" Discharge Hose
- #10 1/2" Suction Hose
- #6 5/16" Liquid Hose
- Eight #10 - 20x1/4" Screws
- Two #10 - 32 x 1/2" Bolt and Lock Nut
- One #10 - 20x3/4" TEK Screw
- One Hose Clamp
- Pressure Switch and harness, Bag of O-rings and Mineral Oil Tube
Place condenser so that both hose connections are on the right side (LARGER FITTING ON TOP).

STEP 1:

BOTTOM BRACKET: Attach the lower bracket PN#0040-30 using four #10-20 x 1/4” HEX-HEAD screws into the 3rd, 4th and 7th, 8th from fittings. (RIGHT SIDE)

- **YES:** #10-20 x 1/4” HEX-HEAD
- **NO:** #10-16 x 3/4” TEK SCREWS
Condenser Prep.

Flip condenser over so that both hose connections are now on the left side (LARGE FITTING ON TOP).

STEP 2:
Attach top bracket PN#0040-31 using four #10-20 X 1/4” HEX-HEAD screws into the 6th, 7th and 9th, 10th holes from fittings. (LEFT SIDE)

STEP 3:
Insert the drier into the drier mounting bracket. Attach the drier liquid tube to the “IN” (SEE Figure 1) port on drier and to the connection on the condenser (using supplied o-rings on both ends and a few drops of mineral oil to each o-ring). Use the two #10 - 32 x 1/2” Bolts and Lock Nuts (attach drier from the front of the condenser).

STEP 4:
Next install the pressure switch to the liquid tube PN#0040-35. (using supplied o-ring and a few drops of mineral oil to o-ring)

FINGER TIGHTEN ALL FITTINGS UNTIL THE DRIER IS IN PLACE!
Use two wrenches when tightening all o-ring connections. Place one wrench on condenser connection, and tighten other fitting connection with other wrench. Apply equal pressure to both wrenches - this will keep twisting force from damaging condenser parts.

FAILURE TO DO SO WILL DAMAGE CONDENSER.
REMOVE THE FOLLOWING:
- Battery
- Radiator
- Hood latch
- Grill (for ease of installation)

Retain all hardware
Condenser Installation

1: Place condenser assembly from engine side of radiator support carefully rotating assembly through radiator opening and placing on **FRONT** side of radiator support as shown.

2: Position the condenser/drier unit into place, locating it so that the holes in the condenser brackets align with the holes in the core support used to attach the hood latch.
3: Reinstall the hood latch using original hardware. (The condenser is held in place when the hood latch is reinstalled.)

Reinstall the radiator using original hardware.
Step 4 Your OEM fender liner was designed to support A/C hose routing and conveniently has two small indentations on the passenger side behind battery (aftermarket fender liners may or may not have these indentations). Locate these two small indentations and drill a 1-3/8” hole thru each (be sure to check for any obstructions before drilling, and remove any sharp burrs from the drilling before continuing, **Step 5**, Insert two rubber grommets (Part # 14-1098).

You’ll route the discharge hose to the compressor will go thru this hole, as well as the liquid hose and the wiring harness plug for the high-pressure switch.
Step 6: Attach the discharge hose (45 degree fitting) to the top of the condenser (using supplied o-ring and a few drops of mineral oil) and route around core support and thru the hole previously drilled in fender liner then continuing in towards firewall and connect to compressor.

Step 7: Attach the liquid hose (90 degree fitting) to the drier (using supplied o-ring and a few drops of mineral oil) and route around core support and thru the hole previously drilled in fender liner then continuing in towards firewall and connect to evaporator connection on firewall.

Step 8: Attach supplied hose clamp using one #10-20 x3/4” TEK screw to frame rail looking through bumper opening on passenger side as shown above.
Install the compressor kit. Included was a premium compressor kit with all the parts you’ll need to install the compressor. This kit includes instructions specifically written for your engine. Once you’ve installed the complete compressor kit, continue on to connecting the hoses.

CONNECTING THE HOSES:
Based on PASSENGER or DRIVERS SIDE compressor mounting see illustrations for routing.

The #10 (LARGEST) refrigerant hose. Attach end with service fitting to the compressor using (1) #10 o-ring and a few drops of mineral oil. Attach other end to #10 fitting at the firewall. Attach using one #10 o-ring and a few drops of mineral oil. Tighten securely.

The #6 (SMALLEST) refrigerant hose. Route behind fender and to the connection on firewall. Attach using two #6 o-ring and a few drops of mineral oil.

The #8 (MEDIUM) refrigerant Hose. Route behind fender and to the connection on compressor. Attach using two #6 o-ring and a few drops of mineral oil.

TWO WRENCH METHOD
Reminder... Use two wrenches to tighten o-ring fittings
New A/C System Preparation... A MUST READ!

Please read through these procedures before completing this new A/C system charging operation. A licensed A/C technician should be utilized for these procedures to insure that your new system will perform at it’s peak, and that your compressor will not be damaged.

1) Your radiator/cooling system is an integral part of your new system. Please insure that you have a 50/50 mix of distilled water and antifreeze. The heater coil **MUST** be purged (cycle heater control valve) to make sure no water, without antifreeze, is in the heater coil before you charge the A/C system.

2) Evacuate the system for 45 minutes (minimum).

3) **Your new compressor MUST** be hand-turned 15-20 revolutions before and after charging with liquid. Failure to do this may cause the reed valves to become damaged (this damage is NOT covered by your warranty).

4) Your new system requires 134a refrigerant. It will require 1.5 lbs (or 24 oz).

5) Your new compressor comes charged with oil - NO additional oil is needed.

6) Insure that the new belt is tight.

7) **DO NOT CHARGE SYSTEM WITH LIQUID REFRIGERANT!**

RECOMMENDED TEST CONDITIONS: (After system has been fully charged and tested for basic operation)

- Determine the temperature outside of the car
- Connect gauges or service equipment to high/low charging ports
- Place blower fan switch on medium
- Close all doors and windows on vehicle
- Place shop fan directly in front of condenser
- Run engine idle up to approx. 1500 rpm

ACCEPTABLE OPERATING PRESSURE RANGES:
1. **HIGH-SIDE PRESSURES** (150-275 PSI)
2. **LOW-SIDE PRESSURES** (10-25 PSI in a steady state)

Readings above are based on an ambient temperature of 90˚ with an adequate airflow on condenser

CAUTION! When mounting your compressor and/or adjusting the belt use caution. Mount by using the centerline of the oil fill plug as your guide. The compressor can ONLY be mounted inbetween the 9 to 3 positions. DO NOT mount inbetween the 4 to 8 positions. This can cause compressor failure.

Do NOT tilt, shake or turn refrigerant can upside-down OR use a charging station to install refrigerant while the engine is running. Doing so will direct liquid refrigerant into the compressor piston chamber, causing damage to reed valves and/or pistons and/or other components, as well as potentially seizing the compressor. Allow a minimum of 30 minutes for liquid to "boil off." You must hand turn the compressor hub (not the pulley) a minimum of 15 complete revolutions prior to starting the engine with the clutch engaged.
TEST CONDITIONS USED TO DETERMINE SYSTEM OPERATION
(These test conditions will simulate the affect of driving the vehicle
and give the technician the three critical readings that they will need
to diagnose any potential problems).

B. Connect gauges or service equipment to high/low
charging ports.
C. Place blower fan switch on medium.
D. Close all doors and windows on vehicle.
E. Place shop fan in front of condenser.
F. Run engine idle up to 1500 RPM.

ACCEPTABLE OPERATING PRESSURE RANGES (R134A TYPE)
1. High-side pressures (150-275 PSI) *Note- general rule of thumb is
two times the ambient (daytime) temperature, plus 15-20%.
2. Low-side pressures (10-25 PSI in a steady state).

CHARGE AS FOLLOWS: R134A = 24 OZ.
No additional oil is necessary in our new compressors.

TYPICAL PROBLEMS ENCOUNTERED IN CHARGING SYSTEMS

NOISY COMPRESSOR. A noisy compressor is generally caused by charging a compressor with
liquid or overcharging
A. If the system is overcharged both gauges will read abnormally high readings. This is
causing a feedback pressure on the compressor causing it to rattle or shake from the
increased cylinder head pressures. System must be evacuated and re-charged to exact
weight specifications.
B. Heater control valve installation - Installing the heater control valve in the incorrect hose.
Usually when this occurs the system will cool at idle then start to warm up when raising the
RPM's of the motor. The heater control is a directional valve; make sure the
water flow is with the direction of the arrow. As the engine heats up that water
transfers the heat to the coil, thus overpowering the a/c coil. A leaking or faulty valve will
have a more pronounced affect on the unit's cooling ability. Installing the valve improperly
(such as having the flow reversed) will also allow water to flow through, thus inhibiting
cooling. Check for heat transfer by disconnecting hoses from the system completely. By running
down the road with the hoses looped backed through the motor, you eliminate the possibility of heat
transfer to the unit.
C. Evaporator freezing - Freezing can occur both externally and internally on an evaporator core.
External freeze up occurs when the coil cannot effectively displace the condensation on the outside
fins and the water forms ice (the evaporator core resembles a block of solid ice), it restricts the flow
of air that can pass through it, which gives the illusion of the air not functioning. The common cause
of external freezing is the setting of the thermostat and the presence of high humidity in the
passenger compartment. All door and window seals should be checked in the event of constant
freeze-up. A thermostat is provided with all units to control the cycling of the compressor.
D. Internal freeze up occurs when there is too much moisture inside the system. The symptoms of
internal freeze up often surface after extended highway driving. The volume of air stays constant,
but the temperature of the air gradually rises. When this freezing occurs the low side pressure will
drop, eventually going into a vacuum. At this point, the system should be checked by a professional
who will evacuate the system and the drier will have to be changed.
E. Inadequate airflow to condenser - The condenser works best in front of the radiator with a large
supply of fresh air. Abnormally high pressures will result from improper airflow. Check the airflow
requirements by placing a large capacity fan in front of the condenser and running cool water over
the surface. If the pressures drop significantly, this will indicate the need for better airflow.
F. Incorrect or inadequate condenser capacity - Incorrect condenser capacity will cause abnormally
high head pressures. A quick test that can be performed is to run cool water over the condenser
while the system is operating, if the pressures decrease significantly, it is likely a airflow or capacity
problem.
G. Expansion valve failure - An expansion valve failure is generally caused by dirt or debris entering the
system during assembly. If an expansion valve fails it will be indicated by abnormal gauge readings.
A valve that is blocked will be indicated by high side that is unusually high, while the low side will
be unusually low or may even go into a vacuum. A valve that is stuck open will be indicated by both
the high and low pressures rising to unusually high readings, seeming to move toward equal
readings on the gauges.
H. Restrictions in system - A restriction in the cooling system will cause abnormal readings on the
gauges. A high-side restriction (between the compressor and the drier inlet) will be indicated by
the discharge gauges reading excessively high. These simple tests can be performed by a local
shop and can help determine the extent of the systems problem.
Trouble Shooting Your Classic Auto Air A/C System

PROBLEM: system is not cooling properly
ISSUE: cold at idle, warmer when raising engine RPM's

Make sure the Water Valve is positioned correctly
The water valve is a directional valve and should be installed with the arrow pointing towards the water pump, it should be connected to the heater hose that runs from the heater core to the water pump. If the water valve is connected to the incorrect hose it allows water to circulate through the system via the heater core over powering the cooling effect of the A/C coil, (normally the air conditioning is functioning properly).

Step 1: Check placement of the water valve, correct if needed. (In some cases changing the location of the water valve may not fix the above problem.) Continue to next step.
Step 2: If changing the location of the water valve does not rectify the issue, then possibly the water valve is permanently damaged and may need to be replaced. To check the integrity of the water valve completely remove the water hoses for the heater core and "loop" together. (This will remove the heater system completely from the possibilities) If the system now cools, replace the water valve

Verify Adequate Air Flow to Condenser
For an air conditioning system to function properly there has to be adequate airflow across the condenser. The function of the condenser is to dissipate heat, without proper airflow your system will not cool correctly in the cabin of your vehicle.

Step 1: connect gauges to a/C hoses. The pressures should be: with the ambient temp is 90, low side pressures should be between 10-25 psi, high side pressures should be between 150-275 psi
Step 2: IF the low side pressures are normal and the high side pressures are high then there might be an airflow issue, continue to next step.

To test air flow to Condenser do the following three tests:
1. Place a piece of paper on the condenser with the car in idle and see if paper is held in place.
2. With car in idle, attach gages, and place a large capacity fan in front of the condenser. What happens to the pressures?
3. With car still in idle and gages attached, pour water down the front of the condenser. What happens to the pressures?

If the paper is held in place you are at least getting some air flow. If the high side decreases during test 2 & 3 then your condenser is not getting enough air which is causing your system to not cool properly. To correct this issue you will need a more powerful mechanical fan.

Step 3: Confirm correct Refrigerant charge in System
All of our systems should be charged with 24oz or 1.5 lbs of R134 Refrigerant only. If overcharged you will need to evacuate the system and recharge with the correct amount.*

What measurements mean:
Low Temp and High Pressure seem to be equal...
You have a malfunctioning expansion valve that is stuck open.

High Side is extremely high and Low Side is extremely low (possibly into vacuum)...
There is a blockage in the system. Remove hoses and blow compressed air through in both directions. If pressures don’t change its possible that your expansion valve is stuck closed and would have to be replaced.

*Compressor Concerns:
This is often misdiagnosed as a problem for the system not cooling properly. If you have a noisy compressor it is due to improper charging of refrigerant. An overcharged (more than 24oz or 1.5 lbs R134) compressor can cause rattling. If charged with pure liquid there is a high probability you have bent reed valves that are causing tapping sound.
IF YOU PRINTED THIS MANUAL PLEASE READ THIS...
Just as a cautionary step, please measure this box and make sure it is 1" x 1". Some copiers/printers may not print at 100% of actual size.

TWO NEW HOLES
7/64" DIAMETER

ORIGINAL HOLES

1
ALIGN WITH BOTTOM OF DEFROST DUCT

CUT LINE

ALIGN WITH BOTTOM OF DEFROST DUCT

DEFROST MODIFICATION TEMPLATE
1966-1967 CHEVELLE/MALIBU

IF YOU PRINTED THIS MANUAL
PLEASE READ THIS...
Just as a cautionary step, please measure this box and make sure it is 1" x 1". Some copiers/printers may not print at 100% of actual size.

ALERT! GM part# 3870273

GM PART NUMBER
3870273