Installation Manual

1966-77 Bronco

DOCUMENT #1-2078
©2019 Classic Auto Air / 08.19
Congratulations...

You have just purchased the highest quality, best performing A/C system ever designed for your Ford Bronco.

To obtain the high level of performance and dependability our systems are known for, please pay close attention to the following instructions. Our installation steps and procedures are derived from a long history of research and development and the combined experience achieved through thousands of successful installations (and feedback from customers like you). Please remember that our #1 goal is that you’ll have a successful installation and a system that performs at a very high level for many years to come.

Before starting, read the instructions carefully, from beginning to end, and follow the proper sequence. On the next page you’ll find a safety and general checklist that you should read before starting your installation.

Again, thank you from our entire staff.
Check List, Pre-Installation:

☐ Before beginning the installation check the shipping box for the correct components. YOUR BOXED UNIT INCLUDES A LIST OF MAJOR COMPONENTS AND A LIST OF BAGGED PARTS. We have a 5 stage check process to make sure you have everything you’ll need.

☐ If your vehicle has been or is being modified, some procedures will need to be adjusted to fit your particular application.

☐ A basic cleaning of the engine compartment and interior before beginning will make things go more smoothly.

☐ Check condition of engine mounts. Excessive engine movement can damage hoses to A/C and/or heater.

☐ Before starting, check vehicle interior electrical functions (interior lights, radio, horn, etc). Make a note of anything that does not work as it’s supposed to. During the installation you might find the opportunity to repair or upgrade non-working or out of date components. When you’re ready to start the installation, DISCONNECT THE BATTERY FIRST.

☐ Drain the radiator. Retain the coolant and reuse, or dispose of properly.

☐ SAFETY FIRST: Wear eye protection while drilling/cutting, deburr sharp edges, and never get in a hurry or force a part.

☐ Tools: Your installation only requires the basic tools everyone has in their garage, nothing exotic or specific to A/C or Heat equipment.

Procedures, During Installation:

☐ Fittings: Use one or two drops of mineral oil (supplied with your kit) on ALL rubber o-rings, threads and rear of bump for o-ring where female nut rides. Do not use thread tape or sealants.

☐ Measure twice (or more), cut once

☐ Should you have any technical questions, or feel you have defective components (or missing items), call us immediately, we will be glad to assist you. Our toll-free number is listed on every page, we’re here to help!
A Basic Overview of Automotive A/C....

1. **Evaporator with Blower Fan** In order to remove the heat from the air in the vehicle, the A/C evaporator allows the refrigerant to absorb the heat from the air passing over it. The blower fan moves cool air out into the car interior.

2. **Compressor** The compressor pumps and circulates the refrigerant through the system.

3. **Condenser** The condenser is a heat exchanger mounted at the front of the vehicle. Heat drawn out of the interior of the car is expelled here.

4. **Receiver/Drier** The drier not only dries refrigerant, it also filters the refrigerant and stores it under certain operating conditions.

5. **High Pressure Switch** A pressure switch is used to shut down the system if high or low pressure is detected, basically it acts as a safety switch.

The air conditioning system in your car is comprised of a compressor, condenser, expansion valve, receiver/drier, and evaporator. Refrigerant (also known as Freon) is compressed in the compressor. In the condenser, gas is cooled to a liquid state and travels to the expansion valve. As the liquid refrigerant goes through the expansion valve it rapidly cools in the evaporator. A fan blows over the evaporator and cools the air that blows out your vents.
FAN 3 Speed

MODE (NOTE: POSITIONS ARE FROM FAR COUNTER CLOCKWISE)

<table>
<thead>
<tr>
<th>Position</th>
<th>Dash</th>
<th>Floor/Defrost</th>
<th>A/C Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>0%</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>90%</td>
<td>10%</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>20%</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>70%</td>
<td>30%</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>60%</td>
<td>40%</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>50%</td>
<td>50%</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>40%</td>
<td>60%</td>
<td>OFF</td>
</tr>
<tr>
<td>8</td>
<td>30%</td>
<td>70%</td>
<td>OFF</td>
</tr>
<tr>
<td>9</td>
<td>20%</td>
<td>80%</td>
<td>OFF</td>
</tr>
<tr>
<td>10</td>
<td>10%</td>
<td>90%</td>
<td>OFF</td>
</tr>
<tr>
<td>11</td>
<td>0%</td>
<td>100%</td>
<td>ON</td>
</tr>
</tbody>
</table>

TEMP (NOTE: POSITIONS ARE FROM FAR COUNTER CLOCKWISE)

<table>
<thead>
<tr>
<th>Position</th>
<th>Heater Valve</th>
<th>A/C Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Closed</td>
<td>ON</td>
</tr>
<tr>
<td>2</td>
<td>Closed</td>
<td>OFF</td>
</tr>
<tr>
<td>3</td>
<td>Open 11%</td>
<td>OFF</td>
</tr>
<tr>
<td>4</td>
<td>Open 22%</td>
<td>OFF</td>
</tr>
<tr>
<td>5</td>
<td>Open 33%</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>Open 44%</td>
<td>OFF</td>
</tr>
<tr>
<td>7</td>
<td>Open 55%</td>
<td>OFF</td>
</tr>
<tr>
<td>8</td>
<td>Open 67%</td>
<td>OFF</td>
</tr>
<tr>
<td>9</td>
<td>Open 78%</td>
<td>OFF</td>
</tr>
<tr>
<td>10</td>
<td>Open 89%</td>
<td>OFF</td>
</tr>
<tr>
<td>11</td>
<td>Open 100%</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Moving to the engine compartment:

Disconnect the battery ground cable.
Drain radiator and disconnect Heater hoses from the heater connections on engine side of the firewall.

Located on the firewall in the engine compartment (4) Hex head nut and washers.
Remove and discard.
The brown wire attached to the switch is the power for the new heater and a/c unit.

Remove Glove box, Glove box door.

Remove the control assemblies. Blower switch removal requires the knob to be removed. Discard knob.

Remove nut from front of the blower switch, retain trim ring, and discard switch assembly.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT A
You will use all of these parts and hardware during the next series of installation steps.

Illustrations NOT shown actual size
Install your New Classic Auto Air 66-77 Ford Bronco Decal over the pre-existing holes.

The exploded view on next page will guide you through installation of your controls.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT B
You will use all of these parts and hardware during the next series of installation steps.

Four 1/4 - #20 Washers
PN#25NWSAB

Four 1/4 - #20 x 1" Bolts
PN#25C100HHB52

Four #10 3/4" Tek Screws

Fresh Air Inlet Block Off
PN#10-1025-2
Remove the inlet air flange. Discard flange and original mounting hardware.

Locate the air inlet block off and (4) #10 x ¾” tek screws. Match drill the 4th hole.

Attach the block off over the inlet hole as shown, using (4) #10 screws.
Take a minute to familiarize yourself with the evaporator unit:

- Actuator Motor
- Thermostat
- Dash Hose Connections
- Expansion Valve
- Defrost Hose Connections
- Heater Hose Connections
- Blower Motor
- Liquid Pressure Hose Connection
- Hose Connection
- Mounting bracket
- Heater Air Dumps
Before we install the evaporator we are going to do some drilling.

A: Locate TEMPLATE: Transmission Tunnel drill (2) 5/16” holes for the rear mounting bracket.
B: Measure 4 inches up from the Factory heater holes. Drill 7/8" holes for the Heater 90° fittings.

C: Locate existing factory mounting hole measure 2" up and drill an Drill hole {2"} above from center of factory hole.
NOTE: Two people are needed for this step!

Place evaporator on floor panel. Roll unit up behind the glove box opening, inserting tubes thru the large hole in firewall.

Be sure to align the evaporator unit level with the bottom of dash as shown above, with a small degree of tilt toward the back to allow proper drain of condensation.
You will need two people for this portion of the install.

Locate (2) ¼-20 x 5/8” hex head bolt from the bag kit.

Insert bottom bolt from factory hole engine side of firewall and attach to the rear support bracket. Insert top bolt into hole drilled earlier.

Tighten the screws on back of the unit.
Locate (2) ¼-20 x 5/8” hex head bolt from the bag kit.

Insert bolts from engine side of firewall through hole drilled earlier and attach to the support brace.

The evaporator should now be completely mounted.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT C
You will use all of these parts and hardware during the next series of installation steps.

- Liquid, Hose Assembly, Evap
 PN#H0095-3
- Suction, Hose Assembly, Evap
 PN#H0095-5
- Two Hose, Heater 5/8 Dia.
 PN#34-50004
- Refrigerant Tape
 PN#Q201
- Two #10 O-Ring
 PN#015N
- Two #6 O-Ring
 PN#011N
- Four Worm Gear Clamps
 PN#6274 IDEAL
- Clear Plastic Drain Tube
 PN#31004845
- Two Bulkhead Washer
 PN#0095-2
- Two Fittings, Heater 90°
 PN#0027-53
Locate the liquid hose (smallest), suction hose (largest), and (2) bulkhead plates from the Bag Kit. Insert bulkhead fittings through (1) the bulkhead plate and then through the firewall.

Route smallest hose up and around blower and attach to the expansion valve using (1) #6 o-ring and a few drops of mineral oil.

Route largest of the hoses around blower and attach to the unit using (1) #10 o-ring and a few drops of mineral oil.

On engine side of the firewall attach second bulkhead plate over the fittings and use the fitting nut and rubber seal to attach. Tighten securely.
Locate in the Bag kit (2) Heater 90° Fittings. Install Heater 90° Fittings thorough 7/8” holes previously drilled.

Heater fittings should be in line with Bulkhead Plates Fittings already installed.
Locate the (2) pieces of heater hose from the Bag kit.

Insert Heater 90° fittings through the firewall and attach heater hoses with worm gear clamps.

Tighten securely.
D: Drill 3/4" hole for the drain tube just below the evaporator to allow for draining.

Do not fight gravity, have hole lower than the drain tube nipple.
Locate the clear drain tube from the Bag kit.

Attach over drain nipple on bottom of the unit and insert other end through the hole previously drilled.
You can reinstall your radio at this time.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT D

You will use all of these parts and hardware during the next series of installation steps.

- **Classic Auto Air ECU**
 PN#16-1054
- **Calibration Key**
 PN#CAL KEY
- **Four #10 3/4" Tek Screws**
- **Electronic Water Control Valve**
 PN#16-1023
- **Pressure Switch**
 (engine compartment)
- **Yellow Harness**
 PN#0117-61
- **Orange Harness**
 PN#0117-70
- **Ground**
- **Thermostat**
- **OEM Power Supply**
- **Wire Harness - Power Supply**
 PN#0105-35C
- **Blower Switch Connection**
- **Fan Plug**
- **ECU**
- **Relay**
- **Ground**

Illustrations NOT shown actual size
1. Connect Yellow Harness into Defrost/Heat Servo Motor

2. Connect Orange Harness into water valve
The next step is to utilize the main wiring harness and the two wire control harnesses we’ve included, wiring per this diagram. You have three ground wire connections on the main harness to make, one relay to secure, and one power supply to connect to your OEM fuse box. The wiring harnesses are color coded, just follow the connections as specified below.

Connect Orange Harness into Water Valve Port on ECU
Next route other end of harness out of firewall opening

Connect Yellow Harness into Face/Floor Port on ECU

From your Controls,
Connect Green Harness into Control Port on ECU

DO NOT USE!!!
Connect corresponding Fan Switch harness to the Bower Switch on Controls. Connect Power lead to 12V.

Connect red tagged power harness to POWER port on ECU. Connect ground.

12V Power (20 amp fuse) Grd -

Connect corresponding fan motor harness. Connect ground.

Connect both BLUE leads into thermostat (either lead into either terminal)

(White lead is to be connected to compressor)
IMPORTANT NOTICE: PROPER INSTALLATION OF WATER VALVE

Your water valve **MUST** be installed per these instructions!... *(If not, your system will not work properly.)*

The **lower** heater tube connection on firewall will be routed to the water connection on intake manifold using 5/8” dia. heater hose with the supplied worm gear clamp.

The **upper** heater tube connection on the firewall will be routed to the water valve connection labeled **heater core**, using a 6” piece of 5/8” heater hose attached with supplied worm gear clamp.

Connect the remaining outlet on water valve labeled **water pump** to the water pump using 5/8” dia. heater hose with the supplied worm gear clamp.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT E
You will use all of these parts and hardware during the next series of installation steps.

One Duct Hoses, 2” I.D., 2’ Long
One Duct Hose, 2” I.D., 3’ Long
One Duct Hose, 2” I.D., 4’ Long

Two #10 x 3/4” Tek Screws
Six Zip-Ties
One Remote Heat Dump
Two Adaptor, Step Down Hose 2” Assembly

PN#0045-24
PN#2-1025-3
PN#AL-08-40-0-M
PN#0045-24
PN#2-1025-3
The smoother the route of the flex hoses the better the airflow.

Good Idea

Locate and route the duct hoses from the defrost duct assembly upward toward defrost vents.

Attach the flex hose to the existing defrost diffuser using zip-ties.
The smoother the route of the flex hoses the better the airflow.

Attach heat dump to firewall just to left of the clutch pedal using (2) #10 tek screws.

Route 45” flex hose over the steering column and attach to the heat dump.
THESE ARE THE PARTS YOU WILL FIND IN BAG KIT F

You will use all of these parts and hardware during the next series of installation steps.

- Two Duct Hoses, 2" I.D., 2' Long
- One Duct Hose, 2" I.D., 3' Long
- One Duct Hose, 2" I.D., 4' Long
- Eight Zip-Ties
- Eight #10-14 3/4" Tek Screws
- Four Housing, Louver, Remote

Illustrations NOT shown actual size
The smoother the route of the flex hoses the better the airflow.

Attach lower dash louvers to the bottom of the dash using the included tek screws. Positions the vents so that they won’t interfere with any components.

Take your time and route them so they don’t become kinked or torn.

During installation of the hoses be aware of the eventual movement of the wiper arm components.
Attach lower dash louvers to the bottom of the dash using the included tek screws. Positions the vents so that they won’t interfere with any components and so that the driver and passenger will get the best use of the airflow.

Locate the single under dash louver assembly, and (2) #10 x ¾” tek screws. Attach the housing to passenger side under the dash using #10 screws. Repeat for Driver’s side.

The smoother the route of the flex hoses the better the airflow.
We’ve included a replacement glovebox that you can install at this point. We’ve included screws, and you’ll attach the new glovebox to the OEM glovebox door.

This completes the interior portion of the PERFECT FIT installation process. This is a good time to make a final check that all the controls still move freely and that nothing is loose or hanging down.
The interior of your car should look like the above picture. Plus you probably got to know the underside of your dash a lot better and might even have repaired or upgraded components that needed attention.

If you have any questions before you move on the final phase of this installation, call us.

Let's move on to the major components within the engine compartment.
THESE ARE THE PARTS YOU WILL NEED FOR THE ENGINE COMPARTMENT INSTALLATION FOR YOUR FORD BRONCO 66-77

- Condenser PN#11-1045
- Three Refrigerant Hoses
- Pressure Switch and harness, Bag of O-rings and Mineral Oil Tube PN#10-1007
- Splice and Bullet Connector
- Fittings (2) PN#14-1100
- Two Condenser Brackets PN#0088-50
- Two Condenser Brackets PN#0088-51
- Eight #10 - 20 x 3/8" Screws
- Worm Gear Clamps (2) PN#6274 IDEAL
- Two #10 x 3/4" Tek Screws
- Four #1/4 x 5/8" Bolts
- Four #1/4 Flange Nuts
- Liquid Tube PN#0095-50
- Discharge Tube PN#0095-50
- Two Condenser Brackets PN#0088-50
- Two Condenser Brackets PN#0088-51
- Worm Gear Clamps (2) PN#6274 IDEAL
- Two #10 x 3/4" Tek Screws
- Four #1/4 x 5/8" Bolts
- Four #1/4 Flange Nuts
DRIER AND CONDENSER PREPARATION. You can perform most of the following steps on a clean flat surface like a workbench. Lay the condenser down so that both hose connections are on the right side (the larger connection will be on top).

TUBES: Install the Tubes as shown. Attach tube assemblies to the condenser fittings using o-rings and a few drops of mineral oil for each connection.

BRACKETS: Install the LOWER condenser brackets in the 5th hole from the bottom using four #10 - 20 x 1/4” screws as shown. Notice that the lower tube wraps around the bracket as shown in drawing. Attach using four #10 - 20 x 1/4” screws for the TOP brackets shown in figure 28.

YES NO

#10-20 x 1/4” HEX-HEAD

#10 - 16 X 3/4” TEK SCREWS

Attachments: 5th hole from the bottom.

#8 Large Fitting

#6 Small Fitting
Remove Radiator Fan, Shroud and the Radiator. Retain the original mounting hardware.
Slide condenser assembly so that condenser is on engine side of the radiator support with the mounting brackets behind the support. **Note: Condenser top edge should be even with the radiator support.**

Center the condenser and match drill mounting brackets and attach using Four #1/4 x 5/8” Bolts and Four #1/4 Flange Nuts. Note that the bolts are coming from inside the engine bay.

Match Drill (1) hole 7/8” diameter for the Discharge tube from the condenser. Match Drill (1) hole 3/4” diameter for the Liquid Tube from the condenser.

Your condenser should now be mounted.
Locate the Receiver / Drier, hi/low pressure switch, Drier Mounting bracket, and (2) #10 x ¾" tek screws. Attach pressure switch to the drier and then the assembly to inner fender liner behind battery box using the (2) # 10 x ¾" tek screws.

PRESSURE SWITCH: Screw the high-pressure switch into the port on the top of the drier (see figure 31). Go ahead and plug the pressure switch harness into the switch at this time (black electrical boot with two long white wires).

Route the two white wires through the grommet along with #6 refrigerant hose. One of the wires attaches to blue clutch wire from thermostat and the other to the compressor clutch.

Locate the liquid hose and one #6 o-ring. Attach liquid hose to the drier using one #6 o-ring and few drops of lubricating oil. Route thru lower hole you drilled in the support and route to connection on firewall using O-ring and supplied lubricating oil.

Locate the discharge hose and one #8 o-ring. Attach discharge hose to the condenser using one #8 o-ring and few drops of lubricating oil. Route thru upper hole you drilled in the support and route to connection on compressor using o-ring and supplied lubricating oil.

Reminder... Use two wrenches to tighten o-ring fittings.
Connect the compressor kit. Included was a premium compressor kit with all the parts you’ll need to install the compressor. This kit includes instructions specifically written for your engine. Once you’ve installed the complete compressor kit, continue on to connecting the hoses.

CONNECTING THE HOSES:
Based on PASSENGER or DRIVERS SIDE compressor mounting see illustrations for routing.

The #10 (LARGEST) refrigerant hose. Attach end with service fitting to the compressor using (1) #10 o-ring and a few drops of mineral oil. Attach other end to #10 fitting at the firewall. Attach using one #10 o-ring and a few drops of mineral oil. Tighten securely.

The #6 (SMALLEST) refrigerant hose. Route behind fender and to the connection on firewall. Attach using two #6 o-ring and a few drops of mineral oil.

The #8 (MEDIUM) refrigerant hose. Route across engine and to the connection on compressor. Attach using two #8 o-ring and a few drops of mineral oil.

Reminder...
Use two wrenches to tighten o-ring fittings

TWO WRENCH METHOD
New A/C System Preparation... A MUST READ!

Please read through these procedures before completing this new A/C system charging operation. A licensed A/C technician should be utilized for these procedures to ensure that your new system will perform at it's peak, and that your compressor will not be damaged.

1. Your radiator/cooling system is an integral part of your new system. Please insure that you have a 50/50 mix of distilled water and antifreeze. The heater coil MUST be purged (cycle heater control valve) to make sure no water, without antifreeze, is in the heater coil before you charge the A/C system.

2. Evacuate the system for a minimum of 45 minutes.

3. Your new compressor MUST be hand turned 15-20 revolutions before and after charging with liquid. Failure to do this may cause the reed valves to become damaged. This damage is NOT covered by your warranty.

4. Your new system requires 1.5lbs (24oz) of R134a refrigerant.

5. Your new compressor comes charged with oil - NO additional oil is necessary.

6. Ensure that the new belt is tight.

7. DO NOT charge system with liquid refrigerant!

Recommended Test Conditions:
(After system has been fully charged and tested for basic operation)
- Determine the temperature outside of the car
- Connect gauges or service equipment to high/low charging ports
- Place blower fan switch on medium
- Close all doors and windows on vehicle
- Place shop fan directly in front of condenser
- Run engine idle up to approximately 1500 rpm

ACCEPTABLE OPERATING PRESSURE RANGES:
1. High-side pressures: 150-275 PSI
2. Low-side pressures: 10-25 PSI (in a steady state)

Readings above are based on an ambient temperature of 90˚ with an adequate airflow on condenser.

CAUTION! When mounting your compressor and/or adjusting the belt use caution. Mount by using the centerline of the oil fill plug as your guide. The compressor can ONLY be mounted in-between the 9 to 3 positions. DO NOT mount in-between the 4 to 8 positions.

This can cause compressor failure.

Do NOT tilt, shake or turn refrigerant can upside-down OR use a charging station to install refrigerant while the engine is running. Doing so will direct liquid refrigerant into the compressor piston chamber, causing damage to reed valves and/or pistons and/or other components, as well as potentially seizing the compressor. Allow a minimum of 30 minutes for liquid to "boil off." You must hand turn the compressor hub (not the pulley) a minimum of 15 complete revolutions prior to starting the engine with the clutch engaged.
TEST CONDITIONS USED TO DETERMINE SYSTEM OPERATION
(These test conditions will simulate the affect of driving the vehicle and give the technician the three critical readings that they will need to diagnose any potential problems).

B. Connect gauges or service equipment to high/low charging ports.
C. Place blower fan switch on medium.
D. Close all doors and windows on vehicle.
E. Place shop fan in front of condenser.
F. Run engine idle up to 1500 RPM.

ACCEPTABLE OPERATING PRESSURE RANGES (R134A TYPE)

1. High-side pressures (150-275 PSI) *Note- general rule of thumb is two times the ambient (daytime) temperature, plus 15-20%.
2. Low-side pressures (10-25 PSI in a steady state).

CHARGE AS FOLLOWS: R134A = 24 OZ.

NO ADDITIONAL OIL IS NECESSARY IN OUR NEW COMPRESSORS.

TYPICAL PROBLEMS ENCOUNTERED IN CHARGING SYSTEMS

NOISY COMPRESSOR. A noisy compressor is generally caused by charging a compressor with liquid or overcharging

A. If the system is overcharged both gauges will read abnormally high readings. This is causing a feedback pressure on the compressor causing it to rattle or shake from the increased cylinder head pressures. System must be evacuated and re-charged to exact weight specifications.
B. Heater control valve installation - Installing the heater control valve in the incorrect hose. Usually when this occurs the system will cool at idle then start to warm up when raising the RPM’s of the motor. THE HEATER CONTROL IS A DIRECTIONAL VALVE; MAKE SURE THE WATER FLOW IS WITH THE DIRECTION OF THE ARROW. As the engine heats up that water transfers the heat to the coil, thus overpowering the a/c coil. A leaking or faulty valve will have a more pronounced affect on the unit’s cooling ability. Installing the valve improperly (such as having the flow reversed) will also allow water to flow through, thus inhibiting cooling. Check for heat transfer by disconnecting hoses from the system completely. By running down the road with the hoses looped backed through the motor, you eliminate the possibility of heat transfer to the unit.
C. Evaporator freezing - Freezing can occur both externally and internally on an evaporator core. External freeze up occurs when the coil cannot effectively displace the condensation on the outside fins and the water forms ice (the evaporator core resembles a block of solid ice), it restricts the flow of air that can pass through it, which gives the illusion of the air not functioning. The common cause of external freezing is the setting of the thermostat and the presence of high humidity in the passenger compartment. All door and window seals should be checked in the event of constant freeze-up. A thermostat is provided with all units to control the cycling of the compressor.
D. Internal freeze up occurs when there is too much moisture inside the system. The symptoms of internal freeze up often surface after extended highway driving. The volume of air stays constant, but the temperature of the air gradually rises. When this freezing occurs the low side pressure will drop, eventually going into a vacuum. At this point, the system should be checked by a professional who will evacuate the system and the drier will have to be changed.
E. Inadequate airflow to condenser - The condenser works best in front of the radiator with a large supply of fresh air. Abnormally high pressures will result from improper airflow. Check the airflow requirements by placing a large capacity fan in front of the condenser and running cool water over the surface. If the pressures drop significantly, this will indicate the need for better airflow.
F. Incorrect or inadequate condenser capacity - Incorrect condenser capacity will cause abnormally high head pressures. A quick test that can be performed is to run cool water over the condenser while the system is operating, if the pressures decrease significantly, it is likely a airflow or capacity problem.
G. Expansion valve failure - An expansion valve failure is generally caused by dirt or debris entering the system during assembly. If an expansion valve fails it will be indicated by abnormal gauge readings. A valve that is blocked will be indicated by high side that is unusually high, while the low side will be unusually low or may even go into a vacuum. A valve that is stuck open will be indicated by both the high and low pressures rising to unusually high readings, seeming to move toward equal readings on the gauges.
H. Restrictions in system - A restriction in the cooling system will cause abnormal readings on the gauges. A high-side restriction (between the compressor and the drier inlet) will be indicated by the discharge gauges reading excessively high. These simple tests can be performed by a local shop and can help determine the extent of the systems problem.
Trouble Shooting Your Classic Auto Air A/C System

PROBLEM: system is not cooling properly
ISSUE: cold at idle, warmer when raising engine RPM's

Make sure the Water Valve is positioned correctly

The water valve is a directional valve and should be installed with the arrow pointing towards the water pump, it should be connected to the heater hose that runs from the heater core to the water pump. If the water valve is connected to the incorrect hose it allows water to circulate through the system via the heater core over powering the cooling effect of the A/C coil, (normally the air conditioning is functioning properly).

Step 1: Check placement of the water valve, correct if needed. (In some cases changing the location of the water valve may not fix the above problem.) Continue to next step.

Step 2 If changing the location of the water valve does not rectify the issue, then possibly the water valve is permanently damaged and may need to be replaced. To check the integrity of the water valve completely remove the water hoses for the heater core and “loop” together. (This will remove the heater system completely from the possibilities) If the system now cools, replace the water valve.

Verify Adequate Air Flow to Condenser

For an air conditioning system to function properly there has to be adequate airflow across the condenser. The function of the condenser is to dissipate heat, without proper airflow your system will not cool correctly in the cabin of your vehicle.

Step 1: connect gauges to a/C hoses. The pressures should be: with the ambient temp is 90, low side pressures should be between 10-25 psi, high side pressures should be between 150-275 psi

Step 2: IF the low side pressures are normal and the high side pressures are high then there might be an airflow issue, continue to next step.

Step 3: Confirm correct Refrigerant charge in System

All of our systems should be charged with 24 oz or 1.5 lbs of R134A Refrigerant only. If overcharged you will need to evacuate the system and recharge with the correct amount.*

What measurements mean:

- Low Temp and High Pressure seem to be equal... You have a malfunctioning expansion valve that is stuck open.
- High Side is extremely high and Low Side is extremely low (possibly into vacuum)... There is a blockage in the system. Remove hoses and blow compressed air through in both directions. If pressures don’t change its possible that your expansion valve is stuck closed and would have to be replaced.

Compressor Concerns:

This is often misdiagnosed as a problem for the system not cooling properly. If you have a noisy compressor it is due to improper charging of refrigerant. An overcharged (more than 24 oz or 1.5 lbs R134A) compressor can cause rattling. If charged with pure liquid there is a high probability you have bent reed valves that are causing tapping sound.
FOLD ALONG THIS LINE

IF YOU PRINTED THIS MANUAL PLEASE READ THIS...
Just as a cautionary step, please measure this box and make sure it is 1” x 1”. Some copiers/printers may not print at 100% of actual size.

DRILL HOLE
5/16” (2)

CUT SHAD ED AREA

FOLD ALONG THIS LINE

TEMPLATE: Transmission Tunnel